Products of Non-stationary Random Matrices and Multiperiodic Equations of Several Scaling Factors
نویسندگان
چکیده
Let β > 1 be a real number and M : R → GL(C) be a uniformly almost periodic matrix-valued function. We study the asymptotic behavior of the product Pn(x) = M(β x) · · ·M(βx)M(x). Under some condition we prove a theorem of Furstenberg-Kesten type for such products of non-stationary random matrices. Theorems of Kingman and Oseledec type are also proved. The obtained results are applied to multiplicative functions defined by commensurable scaling factors. We get a positive answer to a Strichartz conjecture on the asymptotic behavior of such multiperiodic functions. The case where β is a Pisot– Vijayaraghavan number is well studied.
منابع مشابه
Solving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets
In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...
متن کاملErratum: Subadditivity, Generalized Products of Random Matrices and Operations Research
An elementary theorem on subadditive sequences provides the key to a far-reaching theory of subadditive processes. One important instance of this theory is the limit theory for products of stationary random matrices. This paper shows that the subadditive inequality that governs the log of the norm of ordinary matrix products also governs other functions of several generalized matrix products. T...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملAutomatic formulation of falling multiple flexible-link robotic manipulators using 3×3 rotational matrices
In this paper, the effect of normal impact on the mathematical modeling of flexible multiple links is investigated. The response of such a system can be fully determined by two distinct solution procedures. Highly nonlinear differential equations are exploited to model the falling phase of the system prior to normal impact; and algebraic equations are used to model the normal collision of this ...
متن کامل7 N ov 2 00 5 Double scaling limit for matrix models with non analytic potentials
We prove the existence of the double scaling limit for unitary invariant ensembles of random matrices with non analytic potentials. The limiting reproducing kernel is expressed in terms of solutions of the Dirac system of differential equations with a potential defined by the Hastings-McLeod solution of the Painleve II equation. Our approach is based on the construction of the perturbation expa...
متن کامل